Щелочной сток производства капролактама щспк. Пластифицирующе-воздухововлекающие

Щелочной сток производства капролактама щспк. Пластифицирующе-воздухововлекающие


Владельцы патента RU 2567294:

Изобретение относится к модифицированию щелочного стока производства капролактама (ЩСПК) для применения в качестве самостоятельного продукта или в составе растворов и смесей, используемых при пониженных температурах (ниже 0°C), например, в качестве: антифриза, антиобледенителя, противогололедного средства, средства против примерзания, прилипания, пыления и выдувания, антислеживателя, профилактической смазки и пр. Способ модифицирования щелочного стока производства капролактама заключается в его обработке кислотой или их смесью или водным раствором кислоты или их смесью до значения pH=4-9. Технический результат - создание технологически простого, недорогого способа модифицирования ЩСПК, а также раствора для применения при пониженных температурах с высокими эксплуатационными характеристиками: низкой температурой застывания до минус 35-70°С и низкой вязкостью при длительной эксплуатации при пониженных температурах и стабильностью свойств в условиях длительного воздействия низких температур. 2 н. и 7 з.п. ф-лы, 1 табл.

Область изобретения

Изобретение относится к предварительной обработке (модифицированию) щелочных стоков производства капролактама (ЩСПК) для применения в качестве самостоятельного продукта или в составе растворов и смесей, используемых при пониженных температурах (ниже 0°C), например, в качестве: антифриза, антиобледенителя, противогололедного средства, средства против примерзания, прилипания, пыления и выдувания, антислеживателя, профилактической смазки и пр.

Уровень техники

ЩСПК применяется в стройиндустрии и промышленности строительных материалов в качестве пластифицирующе-воздухововлекающей добавки в бетон, железобетон, строительные растворы, при производстве цемента, фарфора, гипсового вяжущего, огневого припаса (огнеупоров), керамзитового гравия, кирпича, для разжижения исходных сырьевых смесей минерализации клинкера при производстве цемента, в нефтедобыче - для увеличения нефтеотдачи пластов, а также самостоятельно и в составе растворов и смесей в антиобледенителях, противогололедных средствах, в профилактических средствах для обработки транспортного и горно-транспортного оборудования и для обработки сыпучих и/или влажных материалов типа угля, руды, песка и пр. для предотвращения примерзания, смерзания, пыления и выдувания.

Щелочной сток производства капролактама (ЩСПК), крупнотоннажный отход производства капролактама, представляет собой водный раствор натриевых солей (большей частью адипината натрия) кислых побочных продуктов воздушного окисления циклогексана.

ЩСПК - жидкость от коричневого до темно-коричневого цвета, непрозрачная, без видимых механических примесей.

Состав ЩСПК производства ОАО «КуйбышевАзот» (в % масс.) и свойства:

Состав ЩСПК (ЩКПК) производства ОАО «КемеровоАзот» (в % масс.) и свойства:

Принято считать, что применение щелочного стока производства капролактама обусловлено низким значением вязкости при пониженных температурах и низкой температурой застывания (до -35°C), а также большими доступными объемами сырьевой базы.

Такие свойства ЩСПК определяются содержанием в его составе натриевых солей низкомолекулярных карбоновых кислот (большей частью адипината натрия), понижающих температуру застывания водных растворов и модифицирующих кристаллообразование (эффект плавления льда).

Из патента РФ №2280666, опубл. 27.07.2006, известно средство для борьбы с гололедом, представляющее собой водный раствор ЩСПК с концентрацией 30-100%.

Из авторского свидетельства РФ №1816786, опубл. 07.05.1988, известен раствор (эмульсия), применяемый для обеспыливания и выдувания сыпучих материалов горнодобывающей промышленности, содержащий 0,1-0,3% раствор щелочного стока производства капролактама.

Из патента РФ №2486223, опубл. 27.06.2013, известен раствор для покрытия металлических поверхностей вагонов и другого горнотранспортного, транспортного оборудования против примерзания и прилипания к ним вскрышных пород, угля, руды, известняка и прочих влажных сыпучих материалов, содержащий щелочной сток производства капролактама и стабилизирующую добавку, предотвращающую расслоение и понижающую температуру застывания, в качестве которой используют спирты или соли.

Предлагаемое средство решает техническую задачу расширения сырьевой базы за счет использования отхода производства капролактама, снижение температуры застывания достигается введением в состав стабилизирующей добавки. Кроме того, снижение вязкости при пониженных температурах способствует снижению энергозатрат при обработке профилактическим средством, получению более равномерного слоя покрытия.

Наиболее близким к заявленному решению является известный из авторского свидетельства №1680750, опубл. 30.09.1991, раствор, используемый в качестве средства от выдувания и смерзания твердых топлив при транспортировании, в состав которого входит щелочной сток производства капролактама и водно-кислый сток производства капролактама. Раствор согласно описанию изобретения имеет высокую устойчивость к расслоению. Однако характеризуется температурой застывания порядка (-25)-(-34)°C, что недостаточно для обработки влажных сыпучих материалов в зимний период. При выдерживании в течение 5 часов обработанных раствором сыпучих материалов при температурах (-25)-(-35)°C наблюдается смерзание материала, а при температуре минус 34°C в растворе наблюдается расслоение (выпадение осадка). Причем увеличение кислотности раствора до pH=6,5 ведет к повышению температуры застывания раствора, а увеличение щелочности до pH=9,5 ведет к увеличению вязкости, а при минус 34°C выпадению осадка.

Основным существенным недостатком ЩСПК и известных растворов на основе ЩСПК является то, что при длительном термостатировании их при пониженных температурах (выдерживание при температурах ниже минус 20°C не менее 3-х часов) происходит резкое увеличение вязкости, выпадение осадка (в растворах ЩСПК) и, как следствие, происходит застывание ЩСПК или растворов со ЩСПК при температуре значительно выше заявленной номинальной температуры застывания.

Применение в растворах на основе ЩСПК, используемых при пониженных температурах (ниже 0°C) (антифризах, антиобледенителях, противогололедных средствах, средствах против примерзания, прилипания, пыления и выдувания), таких компонентов, понижающих температуру застывания водных растворов, как одноатомные спирты, многоатомные спирты, алкиленгликоли, эфиры алкиленгликолей, соли органических и/или неорганических кислот щелочных металлов, существенно не изменяет указанные свойства растворов на основе ЩСПК. При длительном термостатировании при температурах ниже минус 20°C происходит резкое увеличение вязкости, выпадение осадка и застывание растворов ЩСПК, содержащих данные компоненты.

Указанные свойства ЩСПК и растворов на основе ЩСПК приводят к ограничению использования указанных средств в температурном диапазоне ниже минус 20°C (транспортировка и хранение ЩСПК и растворов ЩСПК), а также усложняют технологию их использования (например, распыление на поверхности или на материалы через устройства струйного и форсуночного распыления), также снижается равномерность покрытия.

Раскрытие изобретения

Технический результат, обеспечиваемый изобретением, заключается в расширении арсенала средств на основе щелочного стока производства капролактама (ЩСПК), предназначенных для применения при пониженных температурах (ниже 0°C), создании технологически простого и недорогого способа модифицирования ЩСПК для применения в качестве самостоятельного продукта или в составе растворов и смесей, применяемых при пониженных температурах (ниже 0°C), и создании средства (раствора или смеси) с высокими эксплуатационными характеристиками: низкой температурой застывания до минус 35-70°C и при этом низкой вязкостью при длительной эксплуатации при пониженных температурах и стабильностью свойств в условиях длительного воздействия низких температур.

Технический результат достигается способом модифицирования щелочного стока производства капролактама путем обработки его кислотой или смесью кислот или водным раствором кислоты или их смесью до значения pH=4-9, предпочтительно до значения pH=5-7.

В качестве кислоты используют органическую кислоту, неорганическую кислоту, смесь органических кислот, смесь неорганических кислот, смесь органических и неорганических кислот.

В качестве органической кислоты предпочтительно используют уксусную кислоту, лимонную кислоту, муравьиную кислоту.

В качестве неорганической кислоты предпочтительно используют соляную кислоту, серную кислоту, хлорную кислоту.

В качестве водного раствора кислоты используют 2-99% раствор неорганической кислоты или их смесь, 2-99%-ный раствор одноосновной карбоновой кислоты или их смесь, 2-99%-ный раствор С 2 -С 3 двухосновной карбоновой кислоты или их смесь, 5-99% раствор двухосновной С 4 карбоновой кислоты, 10-99% раствор двухосновной С 5 карбоновой кислоты, 20-99% раствор двухосновной С 6 карбоновой кислоты, 2-99%-ный раствор двухосновной С 7 -С 18 карбоновой кислоты или их смесь, 2-99%-ный раствор многоосновной карбоновой кислоты или их смесь.

Технический результат достигается в растворе для применения при пониженных температурах, включающем ЩСПК, модифицированном посредством обработки его кислотой или смесью кислот или водным раствором кислоты или их смесью до значения pH=4-9, предпочтительно до значения pH=5-7.

Раствор для применения дополнительно может содержать добавку, понижающую температуру застывания в количестве 2-30% мас.

Степень обработки ЩСПК фиксируют изменением водородного показателя pH раствора:

при pH раствора 13-10 (необработанный ЩСПК) увеличение вязкости, уменьшение текучести, выпадение осадка и застывание раствора происходит при термостатировании до минус 10-15°C;

при pH раствора 9-8 (добавление примерно 1-5% кислоты) увеличение вязкости, выпадение осадка и застывание раствора происходит при термостатировании до минус 30°C;

При pH раствора 7-5 (добавление примерно 3-8% кислоты) не происходит увеличения вязкости, выпадения осадка, застывание раствора происходит при термостатировании до -35-45°C;

При pH раствора 4-2 (добавление более 50% кислоты) также не происходит увеличения вязкости и выпадения осадка, застывание раствора происходит при термостатировании до -35°C, но такой раствор имеет кислую реакцию, при значительном увеличении концентрации кислоты происходит повышение температуры застывания раствора, раствор агрессивный, коррозионно-активный.

Таким образом, оптимальным является значение pH 5-7 (нейтральный pH), что помимо прочего снижает коррозионное воздействие на металлы.

Если для применения продукта необходим более высокий pH, его показатель после модифицирования можно повышать соединениями, обладающим щелочной реакцией.

При повышении щелочности (повышении pH) модифицированного раствора ЩСПК больше не происходит повышения вязкости, выпадения осадка и повышения температуры застывания, то есть свойства модифицированного ЩСПК изменяются необратимо.

Модифицированный ЩСПК может применяться как самостоятельный продукт или в составе растворов и смесей.

Введение в раствор модифицированного ЩСПК добавок, понижающих температуру застывания водных растворов в количестве 2-30% вес. дополнительно снижает вязкость раствора при пониженных температурах и понижает температуру застывания до минус 35-70°C.

В качестве добавки, понижающей температуру застывания, используют одноатомный спирт, и/или смесь одноатомных спиртов, и/или многоатомный спирт, и/или смесь многоатомных спиртов, и/или алкиленгликоль, и/или смесь алкиленгликолей, и/или эфир алкиленгликоля, и/или смесь эфиров алкиленгликолей, и/или соль органической кислоты щелочного металла, и/или смесь солей органических кислот щелочных металлов, и/или соль неорганической кислоты щелочного металла, и/или смесь солей неорганических кислот щелочных металлов.

Осуществление изобретения

Модифицирование ЩСПК (например, производства ОАО «КуйбышевАзот» или ОАО «КемеровоАзот») производят следующим образом.

В реактор с помощью насоса закачивают ЩСПК из емкости для хранения, производят определение необходимого количества кислоты (или раствора кислоты) из расчета примерно 1-8% по весу. После введения в ЩСПК кислоты через заливную горловину реактора данный состав перемешивается для осуществления модифицирования. Степень окончания реакции модифицирования фиксируют изменением pH раствора. По окончании модифицирования ЩСПК сливают в емкость для готового продукта.

Приготовление раствора на основе модифицированного ЩСПК с добавками, понижающими температуру застывания, производят следующим образом.

После окончания реакции модифицирования ЩСПК через заливную горловину реактора подают добавку в количестве 2-30% вес., состав перемешивается до однородного состояния. Полученный состав сливают в емкость для готового продукта.

Примеры осуществления изобретения

В примерах, приведенных в таблице 1, использовался ЩСПК производства ОАО «Куйбышевазот».

1. ЩСПК предварительно остужают в криостатной бане при -20°C порядка 3 часов. Наблюдается повышение вязкости раствора ЩСПК и ограничение подвижности раствора (застывание).

2. В реактор заливают ЩСПК с исходным pH=10. К общей массе ЩСПК добавляется 1-8% кислоты или раствора кислоты, состав перемешивают порядка 30 минут, оптимальная температура состава 20°C. Водородный показатель pH=4-9.

3. Контрольный замер: в течение 3 часов обработанный ЩСПК остужают в криостатной бане при -20°C, раствор остается подвижным (не застывает).

Полученный модифицированный ЩСПК представляет собой легкоподвижную однородную стабильную жидкость темно-коричневого цвета без осадка, обладающую более низким значением вязкости при пониженных температурах (ниже 0°C) и более низкой температурой застывания при длительном термостатировании (до минус 35-45°C), а использование модифицированного ЩСПК в качестве самостоятельного продукта или в составе растворов, применяемых при пониженных температурах (ниже 0°C), таких как антифризы, антиобледенители, средства против смерзания, примерзания, прилипания, пыления и выдувания, антислеживатели, профилактические смазки и пр., позволит значительно улучшить их эксплуатационные характеристики в условиях низких температур.

4. Для приготовления раствора на основе модифицированного ЩСПК с добавками, понижающими температуру застывания, после окончания реакции модифицирования к общей массе модифицированного ЩСПК через заливную горловину реактора подают добавку в количестве 2-30% вес., раствор перемешивают до однородного состояния порядка 30 минут. Полученный раствор сливают в емкость для готового продукта.

Результаты испытаний немодифицированного ЩСПК (пример 1.1) и растворов на основе немодифицированного ЩСПК (примеры 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1 и 9.1), модифицированного ЩСПК (примеры 1.2-1.7) и растворов на основе модифицированного ЩСПК (примеры 2.2-2.8, 3.2-3.8, 4.2-4.10, 5.2-5.7, 6.2-6.7, 7.2-7.6, 8.2-8.5, 9.2-9.5), а также ЩСПК, обработанного по прототипу, приведены в таблице 1.

1. Способ модифицирования щелочного стока производства капролактама, отличающийся тем, что щелочной сток обрабатывают кислотой или смесью кислот, или водным раствором кислоты, или их смесью до значения pH=4-9.

2. Способ по п.1, отличающийся тем, что обработку щелочного стока ведут предпочтительно до значения pH=5-7.

3. Способ по п.1, отличающийся тем, что в качестве кислоты используют органическую кислоту, неорганическую кислоту, смесь органических кислот, смесь неорганических кислот, смесь органических и неорганических кислот.

4. Способ по п.3, отличающийся тем, что в качестве органической кислоты предпочтительно используют уксусную кислоту, лимонную кислоту, муравьиную кислоту.

5. Способ по п.3, отличающийся тем, что в качестве неорганической кислоты предпочтительно используют соляную кислоту, серную кислоту, хлорную кислоту.

6. Способ по п.1, отличающийся тем, что в качестве водного раствора кислоты используют 2-99% раствор неорганической кислоты или их смесь, 2-99%-ный раствор одноосновной карбоновой кислоты или их смесь, 2-99%-ный раствор C 2 -C 3 двухосновной карбоновой кислоты или их смесь, 5-99% раствор двухосновной C 4 карбоновой кислоты, 10-99% раствор двухосновной C 5 карбоновой кислоты, 20-99% раствор двухосновной C 6 карбоновой кислоты, 2-99%-ный раствор двухосновной C 7 -C 18 карбоновой кислоты или их смесь, 2-99%-ный раствор многоосновной карбоновой кислоты или их смесь.

7. Раствор для применения при пониженных температурах, отличающийся тем, что включает щелочной сток производства капролактама, модифицированный способом по п.1.

8. Раствор по п.7, отличающийся тем, что дополнительно содержит добавку, дополнительно понижающую температуру застывания, в количестве 2-30% мас.

9. Раствор по п.8, отличающийся тем, что в качестве добавки используют одноатомный спирт, и/или смесь однотомных спиртов, и/или многоатомный спирт, и/или смесь многоатомных спиртов, и/или алкиленгликоль, и/или смесь алкиленгликолей, и/или эфир алкиленгликоля, и/или смесь эфиров алкиленгликолей, и/или соль органической кислоты щелочного металла, и/или смесь солей органических кислот щелочных металлов, и/или соль неорганической кислоты щелочного металла, и/или смесь солей неорганических кислот щелочных металлов.

Похожие патенты:

Изобретение относится к области геокриологии, в частности к способам получения антигололедных реагентов, находящим различное применение, основным из которых является использование для предотвращения и удаления гололеда на взлетно-посадочных полосах и рулежных дорожках аэродромов в различных погодно-климатических условиях.

Изобретение относится к области коммунального хозяйства и дорожной службе, в частности к жидким противообледенительным композициям. Противообледенительная композиция содержит в мас.%: одноатомный спирт 1,0-10,0; ПАВ 0,10-0,30; ингибитор коррозии 0,5-1,0; при необходимости загуститель до 4,0 и водный раствор соли карбоновой кислоты при концентрации 15-60 формиата и/или ацетата натрия или калия в пересчете на сухое вещество до 100.

Изобретение относится к угледобывающей промышленности для борьбы со смерзанием угля, вскрышных пород и примерзанием их к стальным стенкам при транспортировании и хранении.

Изобретение относится к способам подавления или уменьшения обледенения, или образования снега на поверхности с помощью антиобледенительных составов. Противогололедная жидкость содержит ацетат калия, воду и противокоррозионную присадку, включающую бензоат натрия, при этом она дополнительно содержит пропиленгликоль, а противокоррозионная присадка дополнительно содержит бензотриазол, дигидрофосфат натрия, тетраборат натрия, диэтаноламид на основе кислот подсолнечного масла, диэтаноламин, кремнийорганический ПАВ катионного типа.

Изобретение относится к способам подавления или уменьшения обледенения или образования снега на поверхности с помощью антиобледенительных составов. Жидкость противогололедная для взлетно-посадочных полос аэродромов содержит ацетат калия, воду и противокоррозионную присадку, включающую бензоат натрия, при этом она дополнительно содержит ацетат натрия и пропиленгликоль, а противокоррозионная присадка дополнительно содержит бензотриазол, дигидрофосфат натрия, тетраборат натрия, диэтаноламид на основе кислот подсолнечного масла, диэтаноламин, кремнийорганический ПАВ катионного типа.

Изобретение относится к способам подавления или уменьшения обледенения, или образования снега на поверхности с помощью антиобледенительных составов. Противогололедная жидкость для взлетно-посадочных полос аэродромов содержит ацетат калия, воду и противокоррозионную присадку, включающую бензоат натрия, при этом она дополнительно содержит формиат калия, а противокоррозионная присадка дополнительно содержит бензотриазол, дигидрофосфат натрия, тетраборат натрия, диэтаноламид на основе кислот подсолнечного масла, диэтаноламин, кремнийорганический ПАВ катионного типа, В результате достигается возможность увеличить экологическую безопасность и уменьшить коррозионную активность противогололедной жидкости.

Изобретение относится к составам бытовой химии, применяемым для гидрофобизации изделий из натуральной гладкой и ворсовой кожи, и их защиты от негативного воздействия растворов электролитов.

Настоящее изобретение относится к области составов покрытий, а именно касается состава покрытия, включающего состав аминового отвердителя, содержащего бис-ароматический вторичный диамин, бис-ароматический первичный диамин и необязательно моноароматический первичный диамин.

Антигололедный реагент может быть использован для борьбы с гололедом на автодорогах, мостах, путепроводах, на аэродромных взлетно-посадочных полосах. Антигололедную композицию получают путем смешения доломита, соляной и/или уксусной кислоты и воды с последующим добавлением ингибитора коррозии. В качестве ингибитора берут продукт взаимодействия (ПВ) 1 моля жирного амина, 10-30 молей окисиэтилена и 2 молей фосфорсодержащего соединения или состав, содержащий в мас.%: 5-50 высших жирных кислот, 3-20 ПВ или смеси ПВ с оксиэтилированным амином (ОЭА) со степенью оксиэтилирования 10-30 и числом углеродных атомов C8-C20, 3-20 неионогенного поверхностно-активного вещества (НПАВ) и остальное - органический растворитель. Изобретение обеспечивает антигололедный реагент с высокой плавящей способностью, низкой коррозионной активностью и низкой температурой застывания. 2 з.п. ф-лы, 24 пр., 3 табл.

Антигололедная композиция может быть использована для удаления гололеда на взлетно-посадочных полосах аэродрома, на шоссейных дорогах, тротуарах, а также в других областях. Антигололедная композиция включает хлористый кальций, воду и продукт взаимодействия (ПВ) 1 моля жирного амина, 10-30 молей окиси этилена и 2 молей фосфорсодержащего соединения или состав, содержащий в мас.%: 5-50% высших жирных кислот; 3-20% ПВ или смеси ПВ с оксиэтилированным амином (ОЭА) с числом углеродных атомов C8-C20 и степенью оксиэтилирования 10-30; 3-20% неионогенного поверхностно-активного вещества (НПАВ); остальное - растворитель. Антигололедная композиция обладает высокой плавящей способностью, низкой коррозионной активностью и имеет температуру застывания до -60°C, а способ ее получения характеризуется простотой и экономичностью. 2 з.п. ф-лы, 31 пр., 3 табл.

Изобретения относятся к области химии, а именно к полимерным лакокрасочным материалам, образующим на защищаемой поверхности после высыхания супергидрофобное покрытие, и способу получения супергидрофобного покрытия для использования для защиты различных конструкций и сооружений строительства, транспорта и энергетики, эксплуатируемых в условиях открытого выпадения климатических осадков в виде дождя, снега, тумана, от обледенения, коррозии. Технический результат изобретений заключается в создании композиции и способа получения супергидрофобного покрытия, обладающего улучшенными физико-механическими характеристиками и высокими антиобледенительными свойствами. Композиция супергидрофобного покрытия включает в качестве гидрофобного пленкообразователя жидкий гидрофобный полимерный пленкообразователь на основе фторуретановой эмали «Винифтор», гидрофобный материал в виде порошковой смеси микро- и наночастиц микронного фторопласта 4 «Флуралит» с модифицированным силанами нанодисперсным диоксидом кремния Аэросил R-812, взятых при соотношении 20:1, отвердитель «Десмодур 75» и растворитель о-ксилол, при следующих соотношениях ингредиентов, мас. ч.: гидрофобный пленкообразователь - 100, гидрофобный материал в виде порошковой смеси - 10-50, отвердитель «Десмодур 75» - 13, растворитель о-ксилол - 10. В способе получения супергидрофобного покрытия предвариельно готовят порошковый компонент путем интенсивного смешивания микро- и наночастиц микронного фторопласта 4 «Флуралит» с нанодисперсным диоксидом кремния Аэросил R-812. Затем смешивают жидкий гидрофобный полимерный пленкообразователь на основе фторуретановой эмали «Винифтор» с отвердителем «Десмодур 75» и доводят смесь до заданной вязкости путем добавления в нее растворителя о-ксилола. Полученный гидрофобный материал наносят пневматическим распылением на защищаемую поверхность и после этого на не отвержденную поверхность гидрофобного слоя наносят электростатическим распылением предварительно подготовленный порошковый компонент. После отверждения получают супергидрофобное покрытие, характеризуемое краевым углом смачивания не менее 153° и сроком службы покрытия не менее 10 лет. 2 н.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к технологии получения противообледенительных жидкостей (ПОЖ), предназначеных для борьбы с наземным обледенением воздушных судов. Способ приготовления противообледенительной жидкости включает приготовление концентрата путем добавления при перемешивании поверхностно-активного вещества на основании спиртов жирного ряда и загустителя на основе полиакриловой кислоты к водно-гликолевой или водно-глицериновой смеси, используемой в качестве растворителя, взятой в количестве 1-20 вес.% от ее общего требуемого количества. Добавляют при перемешивании полученный концентрат к оставшейся части растворителя с последующим перемешиванием. Затем добавляют при перемешивании к полученной гомогенной суспензии нейтрализующий агент - гидрооксид калия с последующим перемешиванием. Перемешивание осуществляют в смесителе с мешалкой. После завершения перемешивания полученную противообледенительную жидкость обезгаживают путем ее выгрузки из смесителя через ультразвуковой проточный диспергатор. В результате достигается повышение стабильности эксплуатационных характеристик противообледенительной жидкости при ее хранении до начала эксплуатации. 1 ил., 3 пр., 3 табл.

Изобретение относится к химической промышленности, а именно к получению твердых противогололедных материалов с пониженной коррозионной активностью на основе пищевой поваренной соли, кальцинированного хлорида кальция, ингибиторов коррозии. В изобретении описано пять вариантов противогололедного материала. Способ получения твердого противогололедного материала включает равномерное механическое смешивание между собой кристаллической соли пищевой поваренной каменной первого сорта, кристаллического кальция хлористого технического кальцинированного первого сорта, кристаллических элементов ингибитора коррозии металлов, кристаллического поверхностно-активного вещества, кристаллического регулятора кислотности. В процессе получения противогололедного материала каждый элемент ингибитора коррозии насыщают тяжелыми изотопами углерода 13С таким образом, что отношение количества изотопов углерода 13С к общему количеству углерода в элементе составляет величину от 0.005 до 0.75. Также каждый элемент ингибитора коррозии насыщают тяжелыми изотопами азота 15N таким образом, что отношение количества изотопов азота 15N к общему количеству азота в элементе составляет величину от 0,0001 до 0,1375. Технический результат заключается в понижении коррозионной активности противогололедного материала за счет снижения коррозионной активности и повышенной эффективности ингибитора коррозии в составе получаемого твердого противогололедного материала в результате обогащения ингибитора коррозии тяжелыми изотопами углерода 13С и азота 15N в реакторной установке с кавитационным реактором. 5 н.п. ф-лы, 4 ил., 68 табл.

Изобретение относится к химической промышленности, а именно к твердым противогололедным материалам (варианты) с пониженной коррозионной активностью на основе пищевой поваренной соли, кальцинированного хлорида кальция, ингибиторов коррозии. Способ получения твердого противогололедного материала включает равномерное механическое смешивание между собой кристаллической соли пищевой поваренной каменной первого сорта, кристаллического кальция хлористого технического кальцинированного первого сорта, кристаллических элементов ингибитора коррозии металлов, кристаллического поверхностно-активного вещества, кристаллического регулятора кислотности. В процессе получения противогололедного материала каждый элемент ингибитора коррозии насыщают тяжелыми изотопами углерода 13С таким образом, что отношение количества изотопов углерода 13С к общему количеству углерода в элементе составляет величину от 0.005 до 0.75, а также каждый элемент ингибитора коррозии насыщают тяжелыми изотопами азота 15N таким образом, что отношение количества изотопов азота 15N к общему количеству азота в элементе составляет величину от 0,0001 до 0,1375. Достигаемый изобретением технический результат заключается в повышении эффективности ингибитора коррозии в составе получаемого твердого противогололедного материала с пониженной коррозионной активностью за счет обогащения ингибитора коррозии тяжелыми изотопами углерода 13С и азота 15N в реакторной установке с кавитационным реактором. 5 н.п. ф-лы, 4 ил., 68 табл.

Изобретение относится к химической промышленности, а именно к противогололедным материалам. Способ получения твердого противогололедного материала включает равномерное механическое смешивание между собой кристаллической соли пищевой поваренной каменной, кристаллического кальция хлористого, кристаллических элементов ингибитора коррозии металлов, кристаллического поверхностно-активного вещества и кристаллического регулятора кислотности. В процессе получения противогололедного материала каждый элемент ингибитора коррозии насыщают тяжелыми изотопами углерода 13С таким образом, что отношение количества изотопов углерода 13С к общему количеству углерода в элементе составляет величину от 0,005 до 0,75. Также каждый элемент ингибитора коррозии насыщают тяжелыми изотопами азота 15N таким образом, что отношение количества изотопов азота 15N к общему количеству азота в элементе составляет величину от 0,0001 до 0,1375. Обеспечивается повышение эффективности ингибитора коррозии без ухудшения противогололедных свойств получаемого твердого противогололедного материала. 5 н.п. ф-лы, 4 ил, 69 табл.

Cпособ может быть использован для снижения обледенения подложки, например, лопастей ветрогенератора. Наносят на подложку отверждаемые пленкообразующие композиции, содержащие отверждающий агент с изоцианатными функциональными группами, и пленкообразующий полимер с функциональными группами, реакционноспособными по отношению к изоцианатным группам отверждающего агента, и полисилоксан, присутствующий в отверждаемой пленкообразующей композиции в количестве, достаточном для снижения обледенения подложки при воздействии условий, способствующих образованию льда. Полисилоксан содержит полидиметилсилоксан и, по меньшей мере, две функциональные гидроксильные и/или аминогруппы, или полисилоксан содержит, по меньшей мере, один полисилоксан, содержащий, по меньшей мере, одну функциональную группу, которая является реакционноспособной по отношению к функциональным группам, по меньшей мере, одного другого компонента отверждаемой пленкообразующей композиции, и, по меньшей мере, один полисилоксан, который является не реакционноспособным по отношению к функциональным группам других компонентов отверждаемой пленкообразующей композиции. Пленкообразующие композиции можно наносить непосредственно на поверхность подложки или на слой грунтовки и/или верхнего покрытия на подложке. Технический результат - обеспечение при отверждении максимальной средней нагрузки на подложку с покрытием 450 Н при испытании на адгезию льда. 10 з.п. ф-лы, 2 табл.

Профилактическая смазка относится к составам для предотвращения смерзаемости сыпучих материалов, в частности угля, и для борьбы с пылеобразованием, может применяться в угольной, горнорудной, металлургической, строительной и других отраслях промышленности в условиях транспортировки при отрицательных температурах. Профилактическая смазка для предотвращения смерзания сыпучих веществ содержит в своем составе низкозастывающую базовую фракцию и растворяющий ее компонент. В качестве низкозастывающей базовой фракции она содержит шламы нефтепереработки (шлам НП), а в качестве растворяющего компонента спиртовую фракцию капролактама (СФК). Техническим результатом предлагаемой профилактической смазки для предотвращения смерзания сыпучих веществ является снижение смерзаемости угля и примерзания его к стенкам вагонов, сокращение затрат (материальных и трудозатрат) при его транспортировке и разгрузке, что достигается путем нанесения на уголь и внутреннюю поверхность железнодорожных вагонов. 5 ил., 3 табл.

Изобретение относится к химической промышленности, а именно к противогололедным материалам. Способ получения твердого противогололедного материала включает равномерное механическое смешивание между собой кристаллической соли пищевой поваренной каменной, кристаллического кальция хлористого, кристаллических элементов ингибитора коррозии металлов, кристаллического поверхностно-активного вещества и кристаллического регулятора кислотности. В процессе получения противогололедного материала каждый элемент ингибитора коррозии насыщают тяжелыми изотопами углерода 13С таким образом, что отношение количества изотопов углерода 13С к общему количеству углерода в элементе составляет величину от 0,005 до 0,75. Также каждый элемент ингибитора коррозии насыщают тяжелыми изотопами азота 15N таким образом, что отношение количества изотопов азота 15N к общему количеству азота в элементе составляет величину от 0,0001 до 0,1375. Обеспечивается повышение эффективности ингибитора коррозии без ухудшения противогололедных свойств получаемого твердого противогололедного материала. 5 н.п. ф-лы, 4 ил., 69 табл.

Изобретение относится к модифицированию щелочного стока производства капролактама для применения в качестве самостоятельного продукта или в составе растворов и смесей, используемых при пониженных температурах, например, в качестве: антифриза, антиобледенителя, противогололедного средства, средства против примерзания, прилипания, пыления и выдувания, антислеживателя, профилактической смазки и пр. Способ модифицирования щелочного стока производства капролактама заключается в его обработке кислотой или их смесью или водным раствором кислоты или их смесью до значения pH4-9. Технический результат - создание технологически простого, недорогого способа модифицирования ЩСПК, а также раствора для применения при пониженных температурах с высокими эксплуатационными характеристиками: низкой температурой застывания до минус 35-70°С и низкой вязкостью при длительной эксплуатации при пониженных температурах и стабильностью свойств в условиях длительного воздействия низких температур. 2 н. и 7 з.п. ф-лы, 1 табл.

1

Рассматривается метод щелочного – ПАВ заводнения нефтяных месторождений. Особенность данной технологии заключается в последовательной закачке растворов отходов деревообрабатывающей (лигносульфонаты) и нефтехимической (щелочной сток производства капролактама) промышленности. С экономической точки зрения технология является ресурсосберегающей, поскольку стоимость используемых ингредиентов существенно ниже предлагаемых на рынке ПАВ и щелочных компонентов. Для эффективного применения данной технологии с использованием новых химических реагентов разработана программа экспериментально-теоретических исследований, которая включает: анализ месторождения, отбор пробы нефти, отбор кернов, лабораторные исследования, компьютерное моделирование и оценка эффективности применяемой технологии. Определены численные значения основных параметров: вязкость, нефтенасыщенность, кислотность нефти, проницаемость, обводненность, температура, глинистость, минерализация пластовой воды, которые с высокой вероятностью гарантируют эффективность щелочного заводнения.

нефтедобыча

коэффициент извлечения нефти (КИН)

методы увеличения нефтеотдачи (МУН)

щелочной раствор

поверхностно-активные вещества

межфазное натяжение

кислотное число

коэффициент вытеснения нефти

осадкообразование

лигносульфонаты (ЛСТА)

щелочные стоки производства капролактама (ЩСПК)

1. Боксерман А.А., Мищенко И.Т. Потенциал современных методов повышения нефтеотдачи пластов // Нефть и Капитал. «Технологии ТЭК». – 2006. – № 6 (31). – С. 47–52.

2. Желтов Ю.П. Разработка нефтяных месторождений. – М.: Недра, 1986. – 332 с.

3. Зарубежный опыт применения тепловых, газовых, химических методов повышения нефтеотдачи пластов. – http://www.neftepro.ru/publ/25-1-0-57.

4. Ленченкова Л.Е. Повышение нефтеотдачи пластов физико-химическими методами. – М.: Недра, 1998. – 394 с.

5. Сургучев М.Л. Вторичные и третичные методы увеличения нефтеотдачи пластов – М.: Недра, 1985. – 308 с.

6. Патент № 2060375 Российской Федерации / Газизов А.Ш.; Клышников С.В.; Галактионова Л.А.; Газизов А.А. «Составы для вытеснения нефти из пласта». Опубл. 20.05.96, Бюл. № 14.

7. Применение современных методов увеличения нефтеотдачи в России: важно не упустить время // Ernst & Young. – 2013. – С 3–6.

Повышение нефтеотдачи актуально как при разработке новых месторождений, так и при эксплуатации старых, даже значительно истощенных. А в условиях, когда колоссальные запасы нефти сосредоточены в длительно разрабатываемых месторождениях, методы повышения нефтеотдачи пластов приобретают первостепенное значение .

В настоящее время заводнение продуктивных пластов с целью интенсификации добычи нефти и повышения коэффициента извлечения нефти (КИН) широко применяется в отечественной и зарубежной практике . Заводнение обеспечивает высокий коэффициент извлечения нефти благодаря двум факторам: поддержание пластового давления на эффективном для разработки месторождения уровне; физическое замещение нефти водой в порах пласта-коллектора. При всех имеющихся достоинствах освоенного нефтедобывающей промышленностью метода заводнения, он тем не менее не обеспечивает необходимую степень извлечения нефти из пластов. Главная причина невозможности достижения полного вытеснения нефти водой из пластов при их заводнении заключается в несмешиваемости вытесняемой и вытесняющей жидкостей, в результате чего образуется поверхность раздела между этими жидкостями и происходит удержание нефти в пористой среде капиллярными силами. Кроме того, неполное вытеснение нефти водой в охваченных заводнением областях пластов обусловлено неоднородным строением коллектора, гидрофобизацией пород-коллекторов вследствие адсорбции тяжелых компонентов нефти на поверхности зерен пород, а также различием свойств вытесняющей и вытесняемой жидкостей, что приводит к появлению гидродинамической неустойчивости контакта нефть - вода . В результате происходит прорыв вытесняющего агента в добывающие скважины, значительное уменьшение коэффициентов вытеснения нефти из пористой среды и охвата пластов дренированием.

Нефть остается в пористой среде пластов, подвергаемых заводнению, в виде пленок на зернах пород и глобул, находящихся в тупиковых порах или местах пористой среды пластов, обойденных водой.

Использование химических реагентов при заводнении позволяет существенно увеличить КИН. Нагнетание щелочей, водных растворов поверхностно-активных веществ (ПАВ), кислот и других реагентов приводит к изменению свойств пластовой воды и поверхностей раздела между водой, нефтью и горной породой; к уменьшению параметра относительной подвижности и улучшению нефтеотмывающих свойств воды. Например ПАВы спользуются для изменения смачиваемости, могут способствовать образованию эмульсии, уносу, снижению вязкости в объеме фазы и стабилизации дисперсий.

Механизм процесса вытеснения нефти из пластов водным малоконцентрированным раствором ПАВ основан на том, что при этом снижается поверхностное натяжение между нефтью и водой от 35-45 до 7-8,5 мН/м и увеличивается краевой угол смачивания кварцевой пластинки от 18 до 27 г. Следовательно, натяжение смачивания уменьшается в 8-10 раз. Исследования БашНИПИнефть показали, что оптимальной массовой концентрацией неионогенных ПАВ в воде следует считать 0,05-0,1 %. Такой раствор с межфазным натяжением на контакте нефть - вода 7-8 мН/м, как показывают исследования, не может существенно уменьшить остаточную нефтенасыщенность после обычного заводнения пласта, так как капиллярные силы хотя и снижены, но еще достаточно велики, чтобы удержать нефть, окруженную водой в крупных порах. Вытеснение нефти водным малоконцентрированным раствором ПАВ при начальной нефтенасыщенности и сниженном межфазном натяжении приводит к незначительному уменьшению объема нефти, блокированной водой в крупных порах заводненной части пласта. Водные растворы неионогенных ПАВ в этом случае увеличивают коэффициент вытеснения в среднем на 2,5-3 %. Более высокая эффективность вытеснения нефти водным раствором ПАВ при начальной нефтенасыщенности объясняется тем, что сниженное межфазное натяжение между нефтью и раствором ПАВ изменяет в лучшую сторону механизм вытеснения нефти из микрооднородной пористой среды, но недостаточно для продвижения глобул нефти, блокированных в крупных порах водой. По оценкам многих исследователей, водные растворы ПАВ с высоким межфазным натяжением (5-8 мН/м) способны увеличивать конечную нефтеотдачу кварцевых слабоглинизированных пластов не более чем на 2-5 % по сравнению с обычным заводнением, если применять их необходимо с начальной стадии разработки.

Однако у заводнения с химическими реагентами имеются свои недостатки. Самый большой недостаток метода заводнения малоконцентрированными растворами ПАВ заключается в большом межфазном натяжении между нефтью и раствором и высокой адсорбцией химического реагента на породе. Он ставит под сомнение их применение с целью повышения вытесняющей способности воды. Основной недостаток полимерного заводнения заключается в том, что резко снижается продуктивность нагнетательных скважин вследствие резкого роста кажущейся вязкости в призабойных зонах, которую не всегда можно компенсировать повышением давления нагнетания из-за деструкции молекул полимера.

Используя метод щелочного заводнения нефтяных пластов, который основан на взаимодействии щелочей с пластовой нефтью и породой, можно добиться снижения межфазного натяжения на границе раздела фаз нефть - раствор щелочи и увеличения смачиваемости породы водой.

При контакте щелочных растворов с нефтями, особенно активно взаимодействующими с щелочью из-за низкого межфазного натяжения, образуются мелкодисперсные эмульсии типа «нефть в воде», а с малоактивными нефтями - типа «вода в нефти».

Цель исследования. Недостатками метода щелочного заводнения являются очень жесткие критерии применимости его по активности нефти. Минерализация пластовой и закачиваемой воды и большое содержание глин в породе также могут исключать возможность применения метода.

В последние годы начали применять комбинированный метод заводнения, которым является щелочное ПАВ воздействие. Цель закачки такой комбинированной композиции при реализации процесса заводнения состоит в уменьшении остаточной нефтенасыщенности разрабатываемого пласта. Данный вид заводнения сочетает в себе достоинства щелочного заводнения и заводнения с использованием неионогенных ПАВ и сводит к минимуму их недостатки.

Последние двадцать лет лидером в области закачки щелочной композиции является Китай . Данный вид заводнения успешно применялся на основных месторождениях, таких как Дацин и Шэнли. В результате на месторождении Дацин был получен прирост КИН 13 %, а на месторождении Шэнли - 5 %.

Комбинированный метод щелочного заводнения применялся более чем на 30 месторождениях США . В результате данного вида воздействия средний прирост КИН составил 7,5 %.

Основным ограничивающим фактором применения данной технологии является высокая стоимость реагентов. В связи с этим возникает необходимость в исследовании эффективности щелочного заводнения с использованием новых более дешевых компонентов и составов на их основе. В качестве таких реагентов были исследованы лигносульфонаты (ЛСТ) и щелочной сток производства капролактама (ЩСПК) в сочетании с комплексом ПАВ (МЛ-Супер).

Лигносульфонат (ЛСТ) - это природные водорастворимые сульфопроизводные лингина, они образуются в процессе сульфитного способа делингификации древесины. Интерес к лигноусульфонатам, как практический, так и теоретический, обусловлен их высокой поверхностной активностью.

Щелочной сток производства капролактама (ЩСПК) - представляет собой водный раствор натриевых солей кислых побочных продуктов воздушного окисления циклогексана. ЩСПК применяется в стройиндустрии и промышленности строительных материалов, а также в нефтедобыче - для увеличения нефтеотдачи пластов.

Материалы и методы исследования

Закачка раствора ЛСТ (анионные ПАВ, с pH = 4-4,5), которые в пресной воде обычно находятся в коллоидном состоянии (степень гидратации 30-35 %), понижает поверхностное натяжение воды, создает стойкие эмульсии и пены и хорошо подавляет центры адсорбции ПАВ на породе продуктивного пласта.

Закачку раствора ЩСПК с МЛ-Супер также производят на пресной воде. При взаимодействии с водой происходит осадкообразование в высокопроницаемых пропластках, снижение их проницаемости и, как следствие, выравнивание проницаемостной неоднородности с одновременным увеличением коэффициента вытеснения нефти водой с образованием ПАВ при взаимодействии щелочных реагентов с нефтью (pH = 11-13).

Особенностью предлагаемой технологии является использование недорогих отходов деревообрабатывающей и нефтехимической промышленности. При этом предполагается разработка комплексной программы заводнения, обладающей как нефтеотмывающими, так и водоизоляционными свойствами, поскольку взаимодействие двух ингредиентов друг с другом и с минерализованной пластовой водой сопровождается осадкообразованием.

Необходимо отметить, что использование как компонента ЛСТ, так и компонента ЩСПК в технологиях повышения нефтеотдачи пластов в нашей стране известно давно. Так, в патенте РФ 2060375 (приоритет 25.05.1994 г.) в качестве щелочной добавки в закачиваемую воду предложено применять ЩСПК в концентрациях от 4 до 99,9 % . Гелеобразующие составы на основе лигносульфонатов с различными сшивателями и добавками защищены авторскими свидетельствами еще в СССР - SU1716094 A1(приоритет от 21.05.1990). Тем не менее данные химические реагенты совместно не применялись ни в России, ни за рубежом.

Применение данной технологии с использованием предлагаемых новых химических реагентов должно быть обосновано экспериментальными исследованиями. Была разработана программа таких исследований, которая включает: анализ месторождения, отбор пробы нефти, отбор кернов, лабораторные исследования, компьютерное моделирование и оценку эффективности применяемой технологии.

Результаты исследования и их обсуждение

Исходя из предыдущего опыта использования щелочного заводнения был разработан ряд критериев отбора месторождений - кандидатов для успешной реализации щелочного заводнения .

Критерии отбора месторождений - кандидатов для проведения щелочного заводнения

Таким образом, проанализировав геолого-физические характеристики месторождения в соответствии с данными критериями, необходимо рассмотреть технологические параметры месторождения. Они должны соответствовать требованиям проведения щелочного заводнения.

Отбор пробы нефти и отбор кернов необходим для нахождения геолого-физических параметров месторождения, а также для подтверждения эффективности технологии на составных моделях элемента пласта месторождения.

Лабораторные исследования заключаются в нахождении кислотного числа нефти (этот параметр является одним из главных критериев применимости щелочного заводнения), определения коэффициентов вытеснения нефти и оценки увеличения коэффициента охвата на простейших объемных моделях.

Кислотность нефти - это количество щелочи, необходимое для нейтрализации органических кислот, находящихся в 100 мл нефти, измеряется в мг.

Кислотное число определяется с помощью метода потенциометрического титрования. Метод заключается в растворении испытуемого нефтепродукта в спиртобензольной смеси и титровании полученного раствора едким калием. По данному критерию нефти делятся на высокоактивные, активные и малоактивные.

Коэффициенты вытеснения определяются на линейных моделях пласта.

Объектом испытания является характер взаимодействия двух несмешивающихся жидкостей (нефти и воды) при фильтрации их в условиях, соответствующих (близких) пластовым через составной образец породы правильной геометрической формы, приготовленный из керна изучаемого пласта и ориентированный параллельно напластованию.

Моделирование процесса вытеснения нефти водой осуществляется на составной линейной модели элемента пласта, смонтированной из 10 стандартных образцов керна, отобранного из продуктивного пласта месторождения.

В качестве вытесняющей жидкости используют сначала пластовую воду, а затем предложенные химические реагенты. Вытеснение осуществляется при пластовых температурах с постоянной скоростью до полного обводнения выходящей жидкости.

По окончании процесса вытеснения нефти рабочим агентом, методом материального баланса рассчитываются коэффициенты вытеснения для моделей элементов пластов месторождения. Коэффициент вытеснения изменяется в ту или иную сторону, что позволяет говорить об эффективности данной технологии.

Для оценки увеличения коэффициента охвата заводнением используют модель элемента пласта с параллельными трубками тока. Трубки тока представляют собой составные модели элемента пласта, различные по проницаемости как минимум в 5 раз, имеющие общий вход и раздельные выходы. Через трубки тока нефть вытесняется пластовой водой, а затем предложенными реагентами. При этом фиксируют изменение объемных скоростей по параллельным трубкам тока, что говорит о перераспределении фильтрационных потоков и, как следствие, увеличения коэффициента охвата.

Завершающим этапом является оценка эффективности технологии с помощью подсчетов дебитов до и после реализации технологии.

Заключение

В настоящей работе рассмотрено щелочное - ПАВ заводнение, основным ограничивающим фактором которого является высокая стоимость ПАВ. В связи с этим было предложено использовать более дешевые реагенты - отходы деревообрабатывающей (ЛСТ) и нефтехимической (ЩСПК) промышленности. Для оценки эффективности предлагаемой технологии с использованием новых химических реагентов была разработана программа исследований, согласно которой каждое месторождение-кандидат должно быть проанализировано по разработанным критериям отбора, после чего с помощью лабораторных исследований и компьютерного моделирования можно говорить об успешной реализации щелочного заводнения.

Библиографическая ссылка

Петров И.В., Тютяев А.В., Должикова И.С. РАЗРАБОТКА ПРОГРАММЫ ЭКСПЕРИМЕНТАЛЬНОЙ ОЦЕНКИ ЭФФЕКТИВНОСТИ ЩЕЛОЧНОГО-ПАВ ЗАВОДНЕНИЯ ДЛЯ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ // Успехи современного естествознания. – 2016. – № 11-1. – С. 182-185;
URL: http://natural-sciences.ru/ru/article/view?id=36207 (дата обращения: 24.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Пластифицирующая и воздухововлекающая добавка для
строительных цементных растворов и бетонов. Применяется в качестве компонента цементных смесей для улучшения технологических показателей бетонов и растворов в конструкциях монолитных полов, перекрытий, стяжек, при изготовлении сложных и ответственных монолитных конструкций и изделий.

Любая цементная смесь, будь то раствор или бетон, требует затворения её водой. Реальная водопотребность цемента, т.е. количество воды,
которое необходимо ему для гидратации, составляет около 15%.



Однако есть ещё одно необходимое требование - подвижность растворной/бетонной смеси. При водоцементном отношении (В/Ц=15%) она окажется

очень жёсткой, практчески «сухой»: её ни уложить, ни разровнять, тем более, не залить в опалубку.

Чтобы цементная смесь стала подвижной, в неё добавляют около 30% воды (В/Ц=30%). При твердении такого раствора или бетона часть воды расходуется на гидратацию цемента, остальная часть - почти половина -
испаряется или уходит по капиллярам, оставляя после себя слои, пронизанные сообщающимися порами, вызывая дополнительную усадку бетона и трещины.

Это особенно критично для конструкций с большими линейными размерами, например бетонных стяжек в конструкциях полов или монолитных фундаментов. Через эти поры в толщу бетона/раствора постепенно проникает вода и при замерзании разрушает конструкцию, происходит коррозия арматуры.

Для уменьшения излишков воды в цементные смеси при размешивании добавляют пластификаторы. Эти добавки, разжижая бетон/раствор, позволяют сделать его подвижным и почти «самонивелирующимися» при минимуме избыточной влаги.

Поэтому в толще бетона/раствора не остаётся лишней воды, подлежащей удалению. Сообщающихся пор не образуется. Бетон обретает плотность, монолитность, прочность, значительно уменьшается его усадка, увеличивается трещиностойкость.

Такими преимуществами обладает пластификатор ЩСПК, рекомендуемый для применения в соответствии с ГОСТом 28013–89.

При механическом замешивании цементной смеси ЩСПК способствует вовлечению в раствор микропузырьков воздуха, которые остаются в его

толще в виде закрытых сферических пор и дополнительно повышают трещиностойкость и прочность конструкции на изгиб.

ЩСПК увеличивает морозостойкость бетона в 1,5–2 раза, снижает расход цемента до 8% при сохранении требуемой подвижности и заданной
прочности.

СПОСОБ ПРИМЕНЕНИЯ

ЩСПК добавляют в воду затворения или - при механическом помешивании - прямо в смеситель. Необходимо учитывать: если применять ЩСПК, то для получения требуемой подвижности смеси понадобится воды на 20–30% менее обычного. Если применять ЩСПК в штукатурных растворах, наилучшие результаты достигаются в накрывочных верхних слоях за счёт создания плотной, высокопрочной и водостойкой поверхности. Если бетон приготавливается или транспортируется автомиксером, можно добавить ЩСПК прямо в миксер в количестве одной упаковки, около 5 литров или более, по усмотрению мастера.

НОРМЫ РАСХОДА

Оптимальная норма введения ЩСПК в бетоны/растворы составляет 0,3–1,2% от массы цемента, т.е. примерно 100–300 г на 100 кг бетона/раствора. О добавке ЩСПК в миксер - см. концовку предыдущего абзаца.

ХРАНЕНИЕ

Срок хранения 1 год. Температура хранения неограничена.
После оттаивания физико-химические свойства ЩСПК сохраняются. В случае незначительного расслаивания в процессе хранения - перемешать перед применением.

МЕРЫ БЕЗОПАСНОСТИ

ЩСПК негорючая жидкость. Имеет щелочную реакцию. ПО ГОСТу 12.1.007–76 запрещается приём пищи и курение в местах использования ЩСПК. При попадании на открытые участки кожи быстро промыть водой.

УПАКОВКА

Пластиковая бутыль 5,25 л; 70 штук на поддоне.

Пластифицирующая и воздухововлекающая добавка для
строительных цементных растворов и бетонов. Применяется в качестве компонента цементных смесей для улучшения технологических показателей бетонов и растворов в конструкциях монолитных полов, перекрытий, стяжек, при изготовлении сложных и ответственных монолитных конструкций и изделий.

Любая цементная смесь, будь то раствор или бетон, требует затворения её водой. Реальная водопотребность цемента, т.е. количество воды,
которое необходимо ему для гидратации, составляет около 15%.



Однако есть ещё одно необходимое требование - подвижность растворной/бетонной смеси. При водоцементном отношении (В/Ц=15%) она окажется

очень жёсткой, практчески «сухой»: её ни уложить, ни разровнять, тем более, не залить в опалубку.

Чтобы цементная смесь стала подвижной, в неё добавляют около 30% воды (В/Ц=30%). При твердении такого раствора или бетона часть воды расходуется на гидратацию цемента, остальная часть - почти половина -
испаряется или уходит по капиллярам, оставляя после себя слои, пронизанные сообщающимися порами, вызывая дополнительную усадку бетона и трещины.

Это особенно критично для конструкций с большими линейными размерами, например бетонных стяжек в конструкциях полов или монолитных фундаментов. Через эти поры в толщу бетона/раствора постепенно проникает вода и при замерзании разрушает конструкцию, происходит коррозия арматуры.

Для уменьшения излишков воды в цементные смеси при размешивании добавляют пластификаторы. Эти добавки, разжижая бетон/раствор, позволяют сделать его подвижным и почти «самонивелирующимися» при минимуме избыточной влаги.

Поэтому в толще бетона/раствора не остаётся лишней воды, подлежащей удалению. Сообщающихся пор не образуется. Бетон обретает плотность, монолитность, прочность, значительно уменьшается его усадка, увеличивается трещиностойкость.

Такими преимуществами обладает пластификатор ЩСПК, рекомендуемый для применения в соответствии с ГОСТом 28013–89.

При механическом замешивании цементной смеси ЩСПК способствует вовлечению в раствор микропузырьков воздуха, которые остаются в его

толще в виде закрытых сферических пор и дополнительно повышают трещиностойкость и прочность конструкции на изгиб.

ЩСПК увеличивает морозостойкость бетона в 1,5–2 раза, снижает расход цемента до 8% при сохранении требуемой подвижности и заданной
прочности.

СПОСОБ ПРИМЕНЕНИЯ

ЩСПК добавляют в воду затворения или - при механическом помешивании - прямо в смеситель. Необходимо учитывать: если применять ЩСПК, то для получения требуемой подвижности смеси понадобится воды на 20–30% менее обычного. Если применять ЩСПК в штукатурных растворах, наилучшие результаты достигаются в накрывочных верхних слоях за счёт создания плотной, высокопрочной и водостойкой поверхности. Если бетон приготавливается или транспортируется автомиксером, можно добавить ЩСПК прямо в миксер в количестве одной упаковки, около 5 литров или более, по усмотрению мастера.

НОРМЫ РАСХОДА

Оптимальная норма введения ЩСПК в бетоны/растворы составляет 0,3–1,2% от массы цемента, т.е. примерно 100–300 г на 100 кг бетона/раствора. О добавке ЩСПК в миксер - см. концовку предыдущего абзаца.

ХРАНЕНИЕ

Срок хранения 1 год. Температура хранения неограничена.
После оттаивания физико-химические свойства ЩСПК сохраняются. В случае незначительного расслаивания в процессе хранения - перемешать перед применением.

МЕРЫ БЕЗОПАСНОСТИ

ЩСПК негорючая жидкость. Имеет щелочную реакцию. ПО ГОСТу 12.1.007–76 запрещается приём пищи и курение в местах использования ЩСПК. При попадании на открытые участки кожи быстро промыть водой.

УПАКОВКА

Пластиковая бутыль 5,25 л; 70 штук на поддоне.

просмотров